The human Ca2+-activated K+ channel, IK, can be blocked by the tricyclic antihistamine promethazine.
نویسندگان
چکیده
Phenothiazines can be used as psychopharmaceutical agents and are known to cause many side effects during treatment since they interfere with many different cellular systems. Recently, phenothiazines were reported to block Ca(2+)-activated potassium channels of the SK type. Therefore we investigated their effect on the functionally related class of Ca(2+)-activated potassium channels of the IK type. The representative phenothiazine derivative promethazine (PTZ) blocked IK channels almost independently from the extracellular pH(o) with an IC(50) of 49 +/- 0.2 microM (pH(o) 7.4, n = 5) and 32 +/- 0.2 microM (pH(o) 6.2, n = 5) in whole cell experiments. The extracellularly applied membrane impermeable PTZ analogue methyl-promethazine (M-PTZ) had a strongly reduced blocking potency compared to PTZ. In contrast, intracellularly applied PTZ and M-PTZ had the same blocking potency on IK channels in excised inside out patch clamp experiments (K(d) = 9.3 +/- 0.5 microM for PTZ, n = 7 and 6.7 +/- 0.4 microM for M-PTZ, n = 5). The voltage dependency of the PTZ and M-PTZ block was investigated in excised inside out patch clamp experiments at a concentration of 100 microM. For both compounds the block was more pronounced at positive membrane potentials. The steepness of the voltage dependency was found to be 70 +/- 10 mV (for PTZ) and 61 +/- 6 mV (for M-PTZ) indicating that both compounds sensed approximately 40% of the entire membrane spanning electrical field from the inside. We conclude that PTZ and M-PTZ bind to a side in IK channels, which is located within the electrical field and is accessible from the intracellular side.
منابع مشابه
Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro.
Ion channels are important in controlling cell cycle progression and proliferation in a variety of cell types. Using the whole-cell recording mode of the patch-clamp technique, functional ion channels were electrophysiologically characterized in PANC-1 (K-ras G12D (+/-), p53 R273C, Deltap16), BxPC-3 (smad4-, p53 Y220C, Deltap16), and MiaPaCa-2 [transforming growth factor-beta receptor type II d...
متن کاملH(1) antihistamine drug promethazine directly blocks hERG K(+) channel.
Promethazine is a phenothiazine derivative with antihistaminic (H(1)), sedative, antiemetic, anticholinergic, and antimotion sickness properties that can induce QT prolongation, which may lead to torsades de pointes. Since block of cardiac human ether-a-go-go-related gene (hERG) channels is one of the leading causes of acquired long QT syndrome, we investigated the acute effects of promethazine...
متن کاملIntermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis.
We report here the expression in C2C12 myoblasts of the intermediate-conductance Ca2+-activated K+ (IK(Ca)) channel. The IK(Ca) current, recorded under perforated-patch configuration, had a transient time course when activated by ionomycin (0.5 microM; peak current density 26.2 +/- 3.7 pA/pF; n = 10), but ionomycin (0.5 microM) + 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (100 micro...
متن کاملFunctional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms.
The influx of Ca2+ ions controls many important processes in excitable cells, including the regulation of the gating of Ca(2+)-activated K+ channels (the current IK[Ca]). Various IK[Ca] channels contribute to the regulation of the action-potential waveform, the repetitive discharge of spikes, and the secretion of neurotransmitters. It is thought that large-conductance IK[Ca] channels must be cl...
متن کاملActive K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon.
Colonic K+ secretion stimulated by cholinergic agents requires activation of muscarinic receptors and the release of intracellular Ca2+. However, the precise mechanisms by which this rise in Ca2+ leads to K+ efflux across the apical membrane are poorly understood. In the present study, Northern blot analysis of rat proximal colon revealed the presence of transcripts encoding rSK2 [small conduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropharmacology
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2006